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1. Introduction

It has long been recognized that a frequency standard
could be based on the 282 nm transition between the
ground 5d 106s 2S1/2 level and the metastable 5d 96s 2 2D5/2

level of Hg+ [1]. The lifetime of the upper level is 86(3)
ms [2], so the ratio of the natural linewidth �� to the
transition frequency �0 is 2 � 10�15. (Unless otherwise
noted, all uncertainties given in this paper are standard
uncertainties, i.e., one standard deviation estimates.)
Doppler broadening can be avoided if the transition is
excited with two counter-propagating photons, as origi-
nally proposed by Bender et al. [1] and subsequently
demonstrated by Bergquist et al. [3]. However, optical
Stark shifts are greatly reduced if the transition is driven
instead with a single photon by the electric-quadrupole
interaction. In this case, Doppler broadening can be
eliminated if the ion is confined to dimensions much
less than the optical wavelength, as was first demon-
strated by Bergquist et al. [4].

Recently, the (F = 0, MF = 0) to (F = 2, MF = 0) hy-
perfine component of the 199Hg+ 5d 106s 2S1/2 to
5d 96s 2 2D5/2 single-photon transition has been observed
with a linewidth of only 6.7 Hz by Rafac et al. [5]. A
laser servo-locked to this transition is an extremely sta-
ble and reproducible frequency reference. New develop-
ments in optical frequency metrology [6, 7] may soon
make this system practical as an atomic frequency stan-
dard or clock.

While the (F = 0, MF = 0) to (F = 2, MF = 0) hyper-
fine component has no linear Zeeman shift, it does have
a quadratic Zeeman shift that must be accounted for. In
addition, there is a second-order Stark shift and a shift
due to the interaction between the electric-field gradient
and the atomic electric-quadrupole moment. None of
these shifts has yet been measured accurately, so it is
useful to have calculated values, even if they are not very
precise. Also, it is useful to know the functional form of
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the perturbation, even if the magnitude is uncertain. For
example, the quadrupole shift can be eliminated by aver-
aging the transition frequency over three mutually or-
thogonal magnetic-field orientations, independent of the
orientation of the electric-field gradient.

2. Methods and Notation

The quadratic Zeeman shift can be calculated if the
hyperfine constants and electronic and nuclear g -factors
are known. Similarly, the quadratic Stark effect can be
calculated from a knowledge of the electric-dipole oscil-
lator strengths. The quadrupole shift depends on the
atomic wavefunctions. Some of these parameters have
been measured, such as the hyperfine constants and
some of the oscillator strengths. There are also pub-
lished calculations for some of the oscillator strengths.

Here, we estimate, by the use of the Cowan atomic-
structure codes, values for parameters for which there
are neither measured values nor published calculations.
The Cowan codes are based on the Hartree-Fock ap-
proximation with some relativistic corrections [8]. The
odd-parity configurations included in the calculation
were 5d 10np (n = 6,7,8,9), 5d 105f , 5d 96s6p , 5d 96s7p ,
5d 96s5f , and 5d 86s 26p . The even-parity configurations
were 5d 10ns (n = 6,7,8,9,10), 5d 10nd (n = 6,7,8,9),
5d 96s 2, 5d 96s7s , 5d 96s6d , and 5d 96p 2. Recently, San-
sonetti and Reader have made new measurements of the
spectrum of Hg+ and classified many new lines [9].
They also carried out a least-squares adjustment of the
energy parameters that enter the Cowan-code calcula-
tions in order to match the observed energy levels. We
use these adjusted parameters in our Cowan-code calcu-
lations.

As one test of this method of calculation, we esti-
mated the weakly allowed 10.7 �m 5d 106p 2P1/2 to
5d 96s 2 2D3/2 electric-dipole decay rate. This decay is al-
lowed only because of configuration mixing, since it
requires two electrons to change orbitals. The calcula-
tion shows the decay to be due mostly to mixing between
the 5d 106p and 5d 96s6p configurations. The calculated
rate is 111 s�1; the measured rate is 52(16) s�1 [2].
Another test is the electric-quadrupole decay rate of the
5d 96s 2 2D5/2 level to the ground level. The calculated rate
is 12.6 s�1, and the measured rate is 11.6(0.4) s�1. Sim-
ilar calculations have been carried out by Wilson [10].

Let H0 be the atomic Hamiltonian, exclusive of the
hyperfine and external field effects, which are treated as
perturbations. For convenience, we denote the eigen-
states of H0 corresponding to the electronic levels
5d 106s 2S1/2 and 5d 96s 2 2D5/2 having Jz eigenvalue MJ by
|S 1/2 MJ � and |D 5/2 MJ �, respectively.

The corresponding eigenvalues of H0 are denoted
W (S, 1/2) and W (D, 5/2). An arbitrary eigenstate of H0

with eigenvalue W (� , J ) and electronic angular mo-
mentum J is denoted |� J MJ �. Since 199Hg+ has in addi-
tion a nuclear angular momentum I , where I = 1/2, the
complete state designation is |� JFMF �, where F is the
total angular momentum, and MF is the eigenvalue of Fz .

3. Quadratic Zeeman Shift

In order to calculate the energy shifts due to the
hyperfine interaction and to an external magnetic field
B ≡ Bẑ , we define effective Hamiltonian operators
H'S and H'D that operate within the subspaces of hyper-
fine sublevels associated with the electronic levels
5d 106s 2S1/2 and 5d 96s 2 2D5/2, respectively:

H'S = hAS I�J + gJ (S)�B J�B + g'I�B I�B , (1)

H'D = hADI�J + gJ (D)�B J�B + g'I�B I�B , (2)

where AS and AD are the dipole hyperfine constants,
gJ (S) and gJ (D) are the electronic g -factors, g'I is the
nuclear g -factor, h is the Planck constant, and �B is the
Bohr magneton. All of the parameters entering H'S and
H'D are known from experiments, although a more accu-
rate measurement of gJ (D) would be useful. The
ground-state hyperfine constant AS has been measured
in a 199Hg+ microwave frequency standard to be 40
507.347 996 841 59 (43) MHz [11]. The excited-state
hyperfine constant AD has been measured recently by an
extension to the work described in Ref. [5], in which the
difference in the frequencies of the |S 1/2 0 0� to |D 5/2
2 0� and the |S 1/2 0 0� to |D 5/2 3 0� transition frequen-
cies was determined to be 3AD = 2 958.57(12) MHz
[12], in good agreement with an earlier, less precise
measurement by Fabry-Pérot spectroscopy [13]. The
ground-state electronic g -factor gJ (S) was measured in
198Hg+ by rf-optical double resonance to be 2.003 174
5(74) [14]. The excited-state electronic g -factor gJ (D)
was measured in 198Hg+ by conventional grating spec-
troscopy of the 398 nm 5d 106p 2P3/2 to 5d 96s 2 2D5/2 line
to be 1.198 0(7) [15]. The difference in gJ (S) or gJ (D)
between 198Hg+ and 199Hg+ is estimated to be much less
than the experimental uncertainties. The nuclear g -fac-
tor g'I is �5.422 967(9) � 10�4 [16]. The measurement
was made with neutral ground-state 199Hg atoms, so the
diamagnetic shielding factor will be slightly different
from that in the ion. However, this is effect is negligible,
since the magnitude of g'I is so small compared to gJ (S)
or gJ (D).
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The determination of gJ (D) could be improved by
measuring the optical-frequency difference between
two components of the 282 nm line and the frequency of
a ground-state microwave transition at the same mag-
netic field. Since the uncertainty in the quadratic Zee-
man shift is due mainly to the uncertainty in gJ (D), it is
useful to see how accurately it can be estimated theoret-
ically. The Landé g -factor for a 2D5/2 state, including the
correction for the anomalous magnetic moment of the
electron, is 1.200 464. The Cowan-code calculation
shows that the configuration mixing does not change
this value by more than about 10�6, i.e., 1 in the last
place. There are several relativistic and diamagnetic cor-
rections that modify gJ (D), one of which, called the
Breit-Margenau correction by Abragam and Van Vleck
[17], is proportional to the electron mean kinetic energy.
The other corrections are more difficult to calculate.
The Cowan-code result for the mean kinetic energy of
an electron in the 5d orbital of the 5d 96s 2 configuration
is T = 19.32 hcR�, where R� is the Rydberg constant.
Using this value, we obtain a theoretical value of gJ (D),
including the Breit-Margenau correction, of 1.199 85,
which disagrees with the the experimental value by
1.85 � 10�3, which is 2.6 times the estimated experi-
mental uncertainty of Ref. [15]. If we calculate gJ (D)
for neutral gold, which is isoelectronic to Hg+, by the
same method, we obtain a value which differs from the
accurately measured experimental one [18] by
(7 	 2) � 10�5. Thus, the error in the calculated value
for gJ (D) of 199Hg+ might be less than 1 � 10�4, but it is
impossible to be certain of this, since there are uncalcu-
lated terms. Measurements of the 199Hg+ optical clock
frequency at different values of the magnetic field
should result in a better experimental value for gJ (D) in
the near future.

For low magnetic fields (B less than 1 mT), it is
sufficient to calculate the energy levels to second order
in B . To this order in B , the energies of the hyperfine-
Zeeman sublevels for the ground electronic level are

W (S, 1/2, 0, 0, B ) = W (S, 1/2) �
3hAS

4

�
[gJ (S) � g'I ]2� 2

BB 2

4hAS
, (3)

W (S, 1/2, 1, 0, B ) = W (S, 1/2) +
hAS

4

+
[gJ (S) � g'I ]2� 2

BB 2

4hAS
, (4)

W (S, 1/2, 1, 	1, B ) = W (S, 1/2) +
hAS

4

	
[gJ (S) + g'I ]�BB

2
, (5)

For the 5d 96s 2 2D5/2 level we have

W (D, 5/2, 2, 0, B ) = W (D, 5/2) �
7hAD

4

�
[gJ (D) � g'I ]2� 2

B B 2

12hAD
, (6)

W (D, 5/2, 2, 	1, B ) = W (D, 5/2) �
7hAD

4

	
[7gJ (D) � g'I ]�B B

6
�

2[gJ (D) � g'I ]2� 2
BB 2

27hAD
, (7)

W (D, 5/2, 2, 	2, B ) = W (D, 5/2) �
7hAD

4

	
[7gJ (D) � g'I ]�B B

3
�

5[gJ (D) � g'I ]2� 2
BB 2

108hAD
, (8)

W (D, 5/2, 3, 0, B ) = W (D, 5/2) +
5hAD

4

+
[gJ (D) � g'I ]2� 2

B B 2

12hAD
, (9)

W (D, 5/2, 3, 	1, B ) = W (D, 5/2) +
5hAD

4

	
[5gJ (D) + g'I ]�B B

6
+

2[gJ (D) � g'I ]2� 2
BB 2

27hAD
, (10)

W (D, 5/2, 3, 	2, B ) = W (D, 5/2) +
5hAD

4

	
[5gJ (D) + g'I ]�B B

3
+

5[gJ (D) � g'I ]2� 2
BB 2

108hAD
, (11)

W (D, 5/2, 3, 	3, B ) = W (D, 5/2) +
5hAD

4

	
[5gJ (D) + g'I ]�B B

2
. (12)

Here, W (� , J , F , MF , B ) denotes the energy of the state
|� JFMF �, including the effects of the hyperfine interac-
tion and the magnetic field.
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At a value of B of 0.1 mT, the quadratic shift of the
|S 1/2 0 0� to |D 5/2 2 0� transition (optical clock transi-
tion) is �189.25(28) Hz, where the uncertainty stems
mainly from the uncertainty in the experimental value
of gJ (D). In practice, the error may be less than this if
the magnetic field is determined from the Zeeman split-
tings within the |D 5/2 F MF � sublevels. The reason is
that an error in gJ (D) leads to an error in the value of B
inferred from the Zeeman splittings, which partly com-
pensates for the gJ (D) error. If instead we use the calcu-
lated value of gJ (D), the quadratic shift for B = 0.1 mT
is �189.98 Hz, where the uncertainty is difficult to
estimate.

4. Quadratic Stark Shift

The theory of the quadratic Stark shift in free atoms
has been described in detail by Angel and Sandars [19].
The Stark Hamiltonian is

HE = ���E , (13)

where � is the electric-dipole moment operator,

� = �e�
i

ri , (14)

and E is the applied external electric field. In Eq. (14),
ri is the position operator of the i th electron, measured
relative to the nucleus, and the summation is over all
electrons.

First consider an atom with zero nuclear spin, such as
198Hg+. To second order in the electric field, the Stark
shifts of the set of sublevels |� JMJ � depend on two
parameters, 
scalar(� , J ) and 
tensor(� , J ), called the
scalar and tensor polarizabilities. In principle, when
both magnetic and electric fields are present but are not
parallel, the energy levels are obtained by simulta-
neously diagonalizing the hyperfine, Zeeman, and Stark
Hamiltonians. In practice, the Zeeman shifts are nor-
mally much larger than the Stark shifts, so that HE does
not affect the diagonalization. In that case, the energy
shift of the state |� JMJ � due to HE is

�WE (� , J , MJ , E ) = � 1
2 
scalar(� , J )E 2

� 1
4 
tensor(� , J )

[3M 2
J � J (J + 1)]
J (2 J � 1)

(3E 2
z � E 2). (15)

Treating HE by second-order perturbation theory leads
to the following expressions for the polarizabilities [19]:


scalar(� , J ) =
8��0

3(2J + 1) ��'J'

|(� J ||� (1)||�'J' )|2

W (�' , J' ) � W (� , J )
, (16)


tensor(� , J ) = 8��0� 10J (2J � 1)
3(2J + 3)(J + 1)(2J + 1)�

1/2

� �
�'J'

(�1)J�J'�1 1 2
J J J'� |(� J ||� (1)||�'J' )|2

W (�' , J' ) � W (� , J )
. (17)

The summations are over all levels other than |�J �.
Equations (16) and (17) can be rewritten in terms of the
oscillator strengths f�J,�'J' :


scalar(� , J ) =
4��0e 2
 2

me
�
�'J'

f�J,�'J'

[W (�' , J' ) � W (� , J )]2 , (18)


tensor(� , J ) =
4��0e 2
 2

me
�30J (2J � 1)(2J + 1)

(2J + 3)(J + 1) �1/2

� �
�'J'

(�1)J�J'�1 1 2
J J J'� f�J,�'J'

[W (�' , J' ) � W (� , J )]2 , (19)

where me is the electron mass. The tensor polarizability
is zero for levels with J < 1, such as the Hg+ 5d 106s 2S1/2

level.
For an atom with nonzero nuclear spin I , the

quadratic Stark shift of the state |� JFMF � is

�WE (� , J , MF , E ) = � 1
2 
scalar(� , J , F )E 2

� 1
4 
tensor(� , J , F )

[3M 2
F � F (F + 1)]
F (2F � 1)

(3E 2
z � E 2). (20)

We make the approximation that hyperfine interaction
does not modify the electronic part of the atomic wave-
functions (the I J -coupling approximation of Angel and
Sandars [19]). This approximation is adequate for the
present purpose, which is to evaluate the Stark shift of
the 199Hg+ optical clock transition. Obtaining the differ-
ential Stark shift between the hyperfine levels of the
ground state, which is significant for the 199Hg+ mi-
crowave frequency standard [11], requires going to a
higher order of perturbation theory [20]. In the I J -cou-
pling approximation [19],


scalar(� , J , F ) = 
scalar(� , J ), (21)


tensor(� , J , F ) = (�1)I+J+F

�F (2F � 1)(2F + 1)(2J + 3)(2J + 1)(J + 1)
(2F + 3)(F + 1)J (2J � 1) �1/2

��F J I
J F 2�
tensor(� , J ). (22)
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Equations (18) and (19) were used to evaluate the
polarizabilities for the Hg+ 5d 106s 2S1/2 and 5d 96s 2 2D5/2

levels. For the calculation of 
scalar(S, 1/2), the oscillator
strengths for all electric-dipole transitions connecting
the 5d 106s configuration to the 5d 10np (n = 6,7,8) and
5d 96s6p configurations were included. These were
taken from the theoretical work of Brage et al. [21]. The
final result is 
scalar(S, 1/2)/(4��0) = 2.41 � 10�24 cm3,
which compares very well with the value of
2.22 � 10�24 cm3 obtained by Henderson et al. from a
combination of experimental and calculated oscillator
strengths [22]. For the calculations of 
scalar(D, 5/2) and

tensor(D, 5/2), the oscillator strengths for electric-dipole
transitions to the 5d 10np (n = 6,7,8), 5d 105f , and
5d 96s6p configurations were taken from Brage et al.
[21]. The oscillator strengths for electric-dipole transi-
tions to the 5d 96s7p and 5d 86s 26p configurations were
taken from the Cowan-code calculations. The results
were 
scalar(D, 5/2)/(4��0) = 3.77 � 10�24 cm3 and

tensor(D, 5/2)/(4��0) = �0.263 � 10�24 cm3. Evaluating
Eq. (22) for F = 2 and F = 3 in the 5d 96s 2 2D5/2 level, we
obtain 
tensor(D, 5/2, 2) = 4

5
tensor(D, 5/2) and 
tensor(D,
5/2, 3) = 
tensor(D, 5/2).

The tensor polarizability is much smaller than the
scalar polarizabilities and in any case does not con-
tribute if the external electric field is isotropic, as is the
case for the blackbody radiation field. The net shift of
the optical clock transition due to the scalar polarizabil-
ities is 1

2[
scalar(S, 1/2) � 
scalar(D, 5/2)]E 2. In frequency
units, the shift is �1.14 � 10�3 E 2 Hz, where E is ex-
pressed in V/cm. The error in the coefficient is difficult
to estimate, particularly since it is a difference of two
quantities of about the same size. However, the total
shifts are small for typical experimental conditions. If
the electric field is time-dependent, as for the blackbody
field, the mean-squared value �E 2� is taken. At a temper-
ature of 300 K, the shift of the optical clock transition
due to the blackbody electric field is �0.079 Hz. The
mean-squared blackbody field is proportional to the
fourth power of the temperature. For a single, laser-
cooled ion in a Paul trap, the mean-squared trapping
electric fields can be made small enough that the Stark
shifts are not likely to be observable [23].

5. Electric Quadrupole Shift

The atomic quadrupole moment is due to a departure
of the electronic charge distribution of an atom from
spherical symmetry. Atomic quadrupole moments were
first measured by the shift in energy levels due to an
applied electric-field gradient in atomic-beam reso-
nance experiments [24, 25].

The interaction of the atomic quadrupole moment
with external electric-field gradients, for example those
generated by the electrodes of an ion trap, is analogous
to the interaction of a nuclear quadrupole moment with
the electric field gradients due to the atomic electrons.
Hence, we can adapt the treatment used for the electric-
quadrupole hyperfine interaction of an atom [26]. The
Hamiltonian describing the interaction of external elec-
tric-field gradients with the atomic quadrupole moment
is

HQ = ��E (2)�� (2) = �2

q=2

(�1)q�E (2)
q � (2)

�q , (23)

where ��E (2) is a tensor describing the gradients of the
external electric field at the position of the atom, and
� (2) is the electric-quadrupole operator for the atom.

Following Ref. [26], we define the components of
��E (2) as

�E (2)
0 = �

1
2

�Ez

�z
, (24)

�E (2)
	1 = 	

�6
6

�E	

�z
= 	

�6
6

�	 Ez , (25)

�E (2)
	2 = �

�6
12

�	 E	, (26)

where E	 ≡ Ex 	 iEy and �	 ≡ �
�x 	 i �

�y .
The operator components � (2)

q are defined in terms of
the electronic coordinate operators as

� (2)
0 = �

e
2 �j

(3z 2
j � r 2

j ), (27)

� (2)
	1 = � e	3

2 �j

zj (xj 	 iyj ), (28)

� (2)
	2 = � e	3

8 �j

(xj 	 iyj )2, (29)

where the sums are taken over all the electrons. The
quadrupole moment � (� , J ) of an atomic level |� J � is
defined by the diagonal matrix element in the state with
maximum MJ :

� (� , J ) = �� JJ |� (2)
0 |� JJ �. (30)

This is the definition used by Angel et al. [24].
In order to simplify the form of ��E (2), we make a

principal-axis transformation as in Ref. [27]. That is, we
express the electric potential in the neighborhood of the
atom as

833



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

� (x' , y' , z' ) = A [(x' 2 + y' 2 � 2z' 2) + � (x' 2 � y' 2)]. (31)

The principal-axis (primed) frame (x' , y' , z' ) is the one
in which � has the simple form of Eq. (31), while the
laboratory (unprimed) frame (x , y , z ) is the one in
which the magnetic field is oriented along the z axis.

The tensor components of �E (2) in the principal-axis
frame are obtained by taking derivatives of � (x' , y' , z' ):

�E (2)'
0 = �2A , (32)

�E (2)'
	1 = 0, (33)

�E (2)'
	2 = 	2

3
�A . (34)

In the principal-axis frame, HQ has the simple form

HQ = �2A� (2)'
0 + 	2

3
�A
� (2)'

2 + � (2)'
�2�. (35)

As long as the energy shifts due to HQ are small
relative to the Zeeman shifts, which is the usual case in
practice, HQ can be treated as a perturbation. In that
case, it is necessary only to evaluate the matrix elements
of HQ that are diagonal in the basis of states |� JFMF �,
where F is the total atomic angular momentum, includ-
ing nuclear spin I , and MF is the eigenvalue of Fz with
respect to the laboratory (not principal-axis) frame. Let
� denote the set of Euler angles {
 , � , �} that takes the
principal-axis frame to the laboratory frame. To be ex-
plicit, starting from the principal-axis frame, we rotate
the coordinate system about the z axis by 
 , then about
the new y axis by � , and then about the new z axis by
� so that the rotated coordinate system coincides with
the laboratory coordinate system. We can set � = 0,
since the final rotation about the laboratory z axis,
which is parallel to B , has no effect. The states |� JFm �'
defined in the principal-axis frame and the states
|� JF� � defined in the laboratory frame are related by

|� JFm �' = �
�

D (F)
�m (� )|� JF� �, (36)

where D (F)
�m (� ) is a rotation matrix element defined in

the passive representation [28, 29]. The inverse relation
is

|� JF� � = �
m

D (F)*
�m (� )|� JFm �' . (37)

In order to evaluate the diagonal matrix elements of
HQ in the laboratory frame, it is necessary to evaluate
matrix elements of the operators � (2)'

q , defined in the

principal-axis frame. These matrix elements are of the
form

�� JF� |� (2)'
q |� JF� �

= �
m'm

D (F)
�m' (� )D (F)*

�m (� ) ' �� JFm' |� (2)'
q |� JFm �' , (38)

= (� JF ||� (2)||� JF )�
m'm

(�1)F�m'

�
 F 2 F
�m' q m�D (F)

�m' (� )D (F)*
�m (� ), (39)

= (�1)F���q(� JF ||� (2)||� JF )

��
m'm

 F 2 F

�m' q m�D (F)
�m' (� )D (F)

���m (� ), (40)

= (�1)F���q(� JF ||� (2)||� JF ) �
K m m' n n'

(2K + 1)

�
 F 2 F
�m' q m�
F F K

� �� n'�
F F K
m' �m n�D (K)*

n'n (� ),

(41)

= (�1)F���q(� JF ||� (2)||� JF )
 F 2 F
�� 0 ��D (2)*

0�q (� ),

(42)

where Eq. (39) follows from the Wigner-Eckart theo-
rem, and Eqs. (40), (41), and (42) follow from Eqs.
(4.2.7), (4.3.2), and (3.7.8) of Ref. [28], respectively.
The required rotation matrix elements are, from Eq.
(4.1.25) of Ref. [28] (with correction of a typographical
error),

D (2)*
00 (� ) = 1

2(3 cos2 � � 1), (43)

D (2)*
0	2(� ) = 	3

8 sin2 � (cos 2
 � i sin 2
 ). (44)

The 3-j symbol in Eq. (42) is


 F 2 F
�� 0 ��

= (�1)F�� 2[3� 2 � F (F + 1)]
[(2F + 3)(2F + 2)(2F + 1)2F (2F � 1)]1/2 .

(45)
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The diagonal matrix elements of HQ in the laboratory
frame are

�� JFMF |HQ|� JFMF �

=
�2[3M 2

F � F (F + 1)]A (� JF ||� (2)||� JF )
[(2F + 3)(2F + 2)(2F + 1)2F (2F� 1)]1/2

� [(3 cos2 � � 1) � � sin2 � (cos2 
 � sin2 
 )]. (46)

It is simple to show, by directly integrating the angu-
lar factor in square brackets in Eq. (46), that the average
value of the diagonal matrix elements of HQ, taken over
all possible orientations of the laboratory frame with
respect to the principal-axis frame, is zero. This also
follows directly from the fact that the quantity in square
brackets is a linear combination of spherical harmonics.
It is less obvious that the average, taken over any three
mutually perpendicular orientations of the laboratory z
quantization axis, is also zero. This result is proven in
Appendix A. This provides a method for eliminating the
quadrupole shift from the observed transition frequency.
The magnetic field must be oriented in three mutually
perpendicular directions with respect to the trap elec-
trodes, which are the source of the external quadrupole
field, but with the same magnitude of the magnetic field.
The average of the transition frequencies taken under
these three conditions does not contain the quadrupole
shift.

The reduced matrix element in Eq. (46) is, in the
I J -coupling approximation,

(� (I J )F ||� (2)||� (I J )F )

= (�1)I+J+F(2F + 1)�J 2 J
F I F�
 J 2 J

�J 0 J�
�1

� (� , J ), (47)

where I is included in the state notation in order to
specify the order of coupling of I and J . For the partic-
ular case of the 199Hg+ 5d 96s 2 2D5/2 level, the reduced
matrix elements are

(D 5/2 2||� (2)||D 5/2 2) = 2	14
5

� (D, 5/2), (48)

(D 5/2 3||� (2)||D 5/2 3) = 2	21
5

� (D, 5/2), (49)

Since the Cowan-code calculation shows that there is
very little configuration mixing in the 199Hg+ 5d 96s 2 2D5/2

level, � (D , 5/2) can be reduced to a matrix element
involving only the 5d orbital:

� (D , 5/2) =
e
2

�5d 2d5/2, mj

= 5/2|3z 2 � r 2|5d 2d5/2, mj = 5/2�, (50)

=
e
2

�5d , ml = 2|3z 2 � r 2|5d , ml = 2�, (51)

= e	4�
5

�5d , ml = 2|Y2,0(� , � )|5d , ml = 2�, (52)

= e	4�
5

�5d | r 2|5d �

��2�

0
��

0

Y2,2
* (� , � )Y2,0(� , � )Y2,2(� ,� )sin �d�d� , (53)

= 5e �5d | r 2|5d �
 2 2 2
�2 0 2�
2 2 2

0 0 0�, (54)

= �
2e
7

�5d | r 2|5d �. (55)

The apparent sign reversal in Eq. (50) relative to Eqs.
(27) and (30) is due to the fact that the quadrupole
moment is due to a single hole in the otherwise filled 5d
shell rather than to a single electron . According to the
Cowan-code calculation,

�5d | r 2|5d � = 2.324 a0
2 = 6.509 � 10�17 cm2, (56)

where a0 is the Bohr radius.
Since the quadrupole shifts are zero in the 5d 106s 2S1/2

level, the quadrupole shift of the 199Hg+ optical clock
transition is due entirely to the shift of the |D 5/2 2 0�
state, and is given by

�D 5/2 2 0|HQ|D 5/2 2 0�

= 4
5 A� (D, 5/2)[(3 cos2 � � 1)

� � sin2 � (cos2 
 � sin2 
 )], (57)

= � 8
35 Ae �5d | r 2|5d �[(3 cos2 � � 1)

� � sin2 � (cos2 
 � sin2 
 )], (58)


 � 3.6 � 10�3hA [(3 cos2 � � 1)

� � sin2 � (cos2 
 � sin2 
 )]Hz, (59)

where A is expressed in units of V/cm2. Thus, for typical
values A 
 103 V/cm2 and |� | <� 1, the quadrupole shift is
on the order of 1 Hz.
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6. Appendix A. Angular Averaging of the
Quadrupole Shift

For the purpose of describing the quadrupole shift,
the orientation of the laboratory (quantization) axis with
respect to the principal-axis frame is defined by the
angles � and 
 . In the principal-axis coordinate system,
a unit vector along the laboratory z axis is defined in
terms of � and 
 by

ẑ = (sin � cos 
 , sin � sin 
 , cos � ). (60)

We wish to show that the angular dependence of the
quadrupole shift is such that the diagonal matrix ele-
ments given by Eq. (46) average to zero, for ẑ along any
three mutually perpendicular directions.

An arbitrary set of three mutually perpendicular unit
vectors e1, e2, and e3 can be parameterized by the set of
angles � , � , and � in the following way:

e1 = (sin � cos � , sin � sin � , cos � ), (61)

e2 = (cos � cos � cos� � sin � sin� , sin � cos � cos�

+ cos � sin � , �sin � cos � ), (62)

e3 = (�cos � cos � sin� � sin � cos � ,�sin � cos � sin�

+ cos � cos � , sin � sin � ). (63)

It can be verified by direct computation that ei�ej = �ij .
The quadrupole shift can be evaluated for each of

these three unit vectors substituted for ẑ [Eq. (60)] and
the average taken. First consider the average of the quan-
tity (3 cos2 � � 1) that appears in Eq. (46): We use the
fact that cos � is the third component of ẑ , so the
average is:

�3 cos2 � � 1� = cos2� + sin2� cos2� + sin2� sin2� � 1,
(64)

= cos2� + sin2� � 1, (65)

= 0, (66)

for arbitrary � , � , and � . Similarly, the average of
the other angle-dependent term in Eq. (46),
sin2 � (cos2 
 � sin2 
 ), is calculated by making use of
the fact that sin � cos 
 is the first component of ẑ , and
sin � sin 
 is the second:

�sin2 � (cos2 
 � sin2 
 )�

= 1
3[sin2 � cos2 � � sin2 � sin2 �

+ (cos � cos � cos � � sin � sin � )2

� (sin � cos � cos � + cos � sin � )2

+ (cos � cos � sin � + sin � cos � )2

� (sin � cos � sin � � cos � cos � )2], (67)

= 0, (68)

for arbitrary � , � , and � . Hence, the matrix elements of
HQ given by Eq. (46) average to zero for any three
mutually perpendicular orientations of the laboratory
quantization axis.
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